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We provide sufficient conditions for a sequence of positive linear approximation
operators, Ln( f, x), converging to f (x) from above to imply the convexity of f. We
show that, for the convolution operators of Feller type, Kn( f, x), generated by a
sequence of iid random variables taking values in an interval I, having a finite
moment generating function, the inequalities Kn( f, x)� f (x) (x # I, n�1) are
necessary and sufficient conditions for f to be convex. This provides a converse of
a well-known result of R. A. Khan (Acta. Math. Acad. Sci. Hungar. 39 (1980),
193�203). It contains, as a special case, the corresponding result for the Bernstein
polynomials and extends two results obtained for bounded continuous functions by
Horova for Sza� sz and Baskakov operators. As examples, similar results are also
provided for the beta, Meyer-Ko� nig Zeller, Picard, and Bleiman, Butzer, and Hahn
operators. � 1998 Academic Press

1. INTRODUCTION

Let I be an interval and, for each x # I, let [+n, x , n=1, 2, ...] be a
sequence of finite measures concentrating on I. Let g(t) be a non-negative
continuous function increasing to infinity as t � \�. We define Dg(I ) to
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be the linear space of continuous functions over I so that f # Dg(I ) if and
only if for each :>0

sup
t # I

| f (t)|
e:g(t) <�.

When I is unbounded we assume that g grows faster than log( |t|+1) to
avoid trivialities. For all our applications g(t) will grow at least as |t|.
When g(t)=|t|, we will denote Dg(I ) by D(I ). Throughout we will assume
that for some given fixed g, each f # Dg(I ) is integrable with respect to each
+n, x , n=1, 2, ..., x # I and denote the integral by

Ln( f, x) :=|
I

f (t) +n, x(dt), n=1, 2, ... ; x # I.

In the next section we provide conditions under which Ln( f, x)� f (x) for
all n�1 and each x # I implies that f is convex.

An important special case of the above sequence of positive linear
operators which reproduce constant functions can be stated using probabil-
ity distributions. Let Mn be a sequence of positive linear approximation
operators of the type

Mn( f, x) :=Ef (Tn, x)=|
I

f (t) dGn, x(t); n=1, 2, ...,

where the random variables Tn, x , taking values in the interval I, have
respective distributions Gn, x , provided E | f (Tn, x)|<� for each x # I and
n=1, 2, ... and f # Dg(I ). This class contains, besides the following large
group of convolution operators, the beta, Bleiman, Butzer, and Hahn,
Meyer-Ko� nig Zeller, Picard, and many other classical operators.

A further special case of Mn is obtained when Tn, x=(X1, x+
X2, x+ } } } +Xn, x)�n where Xi, x are iid random variables taking values in I.
The resulting sequence of operators will be called the convolution
operators (of Feller type) due to the fact that the distribution Gn, x is a
scaled version of the convolution of the individual distributions of Xi, x ,
i=1, 2, ..., n. We will denote the resulting sequence of operators by Kn .

For a number of positive linear approximation operators of the type Mn ,
it is known that for convex functions the convergence is monotone from
above. For this result, the reader may see [1, 3, 4, 12, 14, 16, 18] and a
list of further references in these papers. In particular, [14] gave a
probabilistic method of showing that, under the condition of existence of
first moment, Kn have to be monotone from above for convex functions. A
different proof of this result and some modifications were recently provided
by [13].
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In this paper we will provide some converse results along the lines of
[18]. However, our main difference is that we do not assume that Ln is
defined over a compact interval nor do we necessarily assume that Ln

reproduce constant and linear functions. We will provide a number of
examples of operators of the type Mn as special cases. Somewhat as a con-
verse of the result of R. A. Khan for Kn , we prove that the existence of the
moment generating function (mgf) of X1, x , having mean x, positive
variance, and Kn( f, x)� f (x) (x # I, n�1) implies that f must be convex
over I. As further special cases, this result contains two well-known results
for the Bernstein operator [15, 17] and extensions of the results in [9, 10]
for Baskakov and Sza� sz operators and a few results in [18].

2. MONOTONICITY OF FUNCTIONALS

For the operator Ln( f, x) as defined in the Introduction we will use the
notation

{n, x($)=|
[t : |t&x|�$]

+n, x(dt); n=1, 2, ... ; $>0.

Theorem 1. Let Ln( f, x) be the sequence of positive linear operators as
defined in the Introduction so that Ln( f, x) � f (x) for each x # I and each
f # Dg(I ). Let Ln reproduce the functions f (t)=1 and f (t)=t. Let for each
x in the interior of I and any $>0 there exist 0<$1(x)<$2(x)<$ and a
constant &=&($1 , $2 , x) # (0, 1) and positive integers ni=ni ($1 , $2 , x),
ni<ni+1 such that

{ni , x($1)>{ni , x($2); i=1, 2, ..., (1.1)

({n, x($2))&=O({n, x($1)); as n=ni � �. (1.2)

Then for any f # Dg(I ), the inequalities Ln( f, x)� f (x) ; x # I, n=1, 2, ... hold
if and only if f is convex over I. When I is compact, we may take &=1 and
replace (1.2) with

{n, x($2)=o({n, x($1)) as n=ni � �. (1.3)

Proof. If f is not convex then (cf. [15]) there exist an element x in the
interior of I, an interval (x&$, x+$)�I, and a line l(t) such that

f (x)=l(x), f (t)<l(t) for all t # (x&$, x+$)"[x].
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Extend l over I. Now select 0<$1<$2<$ so that the conditions of the
theorem hold and define

A :=[t # I : |t&x|�$2], B :=[t # I : $1�|t&x|<$2],

C :=[t # I : |t&x|<$1].

Let /A be the characteristic function of the set A and let Ln( f &l, x)=
Un+Vn+Wn , where

Un :=Ln(( f &l)/A , x), Vn :=Ln(( f &l) /B , x), Wn :=Ln(( f &l) /C , x).

Clearly, both Vn and Wn are non-positive terms. Over the closure of the set
B, l(t)& f (t) attains its minimum value, say m, where m>0 and gives

|Vn |=Ln((l& f ) /B , x)�mLn(/B , x).

Using q=1�&($1 , $2 , x) and 1�p+1�q=1, the Ho� lder inequality provides

|Un |�\|I
| f (t)&l(t)| p +n, x(dt)+

1�p

(Ln(/A , x))1�q

=o(1)(Ln(/A , x))&($1 , $2 , x).

Now condition (1.1) gives [ni], ni=ni ($1 , $2 , x), so that Lni
(/B , x)>0 for

all i. For n=ni , we have

an :=
Ln(/[ |t&x|�$2] , x)
Ln(/[ |t&x|�$1] , x)

�
({n, x($2))1&& ({n, x($2))&

{n, x($1)
� 0.

Therefore, for n=ni , we have

|Un |
|Vn |

�
o(1)

m
[Ln(/A , x)]&

Ln(/B , x)
=

o(1)
m(1&an)

[{n, x($2)]&

{n, x($1)
� 0.

Hence, for some sufficiently large value of n=ni ,

0�Ln( f, x)& f (x)=Ln( f &l, x)<0.

(Note that we have used the reproduction of linear functions only at the
above step.) This contradiction gives the first part of the theorem. When I
is compact, the same argument of the proof goes through, except that now
Dg(I )=C(I ) and let M be a bound of f. Then over n=ni ,

|Un |
|Vn |

�
M [Ln(/A , x)]

m Ln(/B , x)
=

M
m(1&an)

{n, x($2)
{n, x($1)

� 0.
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Conversely, if f is convex then Jensen's inequality gives that Ln( f, x)� f (x)
for all n�1 and each x # I. This finishes the proof. K

The following extension is needed when proving the converse results for
those operators which do not reproduce the function f (t)=t.

Theorem 1(a). Let Ln( f, x) be the sequence of positive linear operators
as defined in the Introduction. Let bn(x)=Ln(t, x)&x, which need not be
zero. For each x in the interior of I and any $>0 let there exist 0<c(x)<
$1(x)<$2(x)<$ and a constant &=&($1 , $2 , x) # (0, 1) and positive integers
ni=ni ($1 , $2 , x), ni<ni+1 such that conditions (1.2) and (1.1) hold and

{ni , x(c)>{ni , x($1), bn(x)=o({ni , x(c)&{ni , x($1)) as n=ni � �.

Then for any f # D(I ), Ln( f, x)� f (x), x # I, n=1, 2, ... imply that f is convex
over I. When I is compact, we may again take &=1 and replace (1.2) by (1.3).

Proof. The argument of the proof of Theorem 1 gives that for all large
n=ni ,

Un+Vn+Wn=Ln( f, x)& f (x)+bn(x)<0.

We need to show that Wn&bn(x)<0 for large n=ni . The only extra step
that needs to be added in the proof of Theorem 1 is that

|bn(x)|
|Wn |

�
|bn(x)|

s[{n, x(x)&{n, x($1)]
� 0; for n=ni � �,

where 0<s is the minimum of l(t)& f (t) over the set [t : c(x)�
|t&x|�$1(x)]. K

Remark. It is now clear how we can further split the Wn term in the
proof of Theorem 1 to accommodate those operators which do not
reproduce even the constant functions. We omit the details, however. The
above results are modifications of those of Ziegler [18]. Although his
results were applicable to generalized convexity, the two main restrictions
were that the interval I was assumed to be compact and that Ln were
assumed to reproduce the first two polynomials of an extended Chebyshev
system. To see a negative result, the reader is referred to [11].

3. CONVOLUTION OPERATORS (FELLER TYPE)

In 1980, R. A. Khan showed that for the convolution operator Kn( f, x),
the convexity of f implies that Kn( f, x)� f (x). We now provide a result in
the opposite direction. For this we will need the following lemma.
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Lemma 1. Let X be a non-degenerate random variable taking values
in an interval I, having finite mgf ,(%) with mean x. If g$(%)=
(x+$)%&log ,(%) then there exists a $>0 so that for any choice of constants
0<$1<$2<$, we have g$1

(#($1))< g$2
(#($2)), where %*=#($) is a unique

solution of the equation ,$(%)=,(%)(x+$). Furthermore, %* is the point of
maxima of g$(%).

Proof. Since X is non-degenerate, it is straightforward to show that
,$(%)�,(%) is a strictly increasing function of % in a small enough interval
[0, u]. Therefore, we can find a $>0, sufficiently small so that there exists
a unique %=#($) so that ,$(%)=,(%)(x+$), and 0<#($)<u<=. Further-
more, #(t) is a strictly increasing function of t # (0, ,$(u)�,(u)). The function

g$(%) :=(x+$)%&log ,(%); 0<%<u

is strictly concave over 0�%�u and the value #($) is the unique point of
maxima of g$(%) over [0, u]. For any choice of 0<$1<$2<$,

g$1
(#($1))<(x+$2) #($1)&log ,(#($1))= g$2

(#($1))

�(x+$2) #($2)&log ,(#($2))= g$2
= g$2

(#($2)).

That is, the constants g$i
($i)) are increasing with i=1, 2. K

Theorem 2. Let Kn( f, x) be the convolution operators (of Feller type) so
that, Kn( f, x) � f (x) for each f # Dg(I ) and each x # I. For each x in the
interior of I, let X1, x have finite mgf, E(X1, x)=x and Var(X1, x)>0. For
any f # Dg(I ), the following statements are equivalent:

(1) f is convex

(2) Kn( f, x)�Kn+1( f, x) (x # I, n�1),

(3) Kn( f, x)� f (x) (x # I, n�1).

Proof. The result of R. A. Khan [14] implies that (1) implies (2). By
the given hypothesis, (2) implies (3). To show that (3) implies (1), we will
show that Kn satisfy the conditions of Theorem 1. Let x be a point in the
interior of I. By two applications of Lemma 1 (one for X1, x and the other
for Y=&X1, x), we may select an =>0 sufficiently small so that for any
choice of 0<$1<$2<= we have g$1

(#($1))< g$2
(#($2)) and for h$(%)=

( y+$)%&log �(%), we have h$1
(+($1))<h$2

(+($2)), where +($) is the solu-
tion of the equation

�$(%)
�(%)

=
&,$(&%)

,(&%)
=&x+$.
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By the rate of convergence in the law of large numbers (see, for instance,
[5, 6]) for any 0<$1<=,

P(Sn�n(x+$1))rexp[&ng$1
(#($1))].

Hence, for any 0<$1<$2<= and all large values of n, {n, x($1)>{n, x($2).
Take

1<q<min {g$2
(#($2))

g$1
(#($1))

,
h$2

(+($2))
h$1

(+($1))= ,

and let &=&($1 , $2 , x)=1�q. By using the rate of convergence in the law of
large numbers once again, for all large values of n, we have

[{n, x($2)]&

{n, x($1)
�

[P(Sn�n(x+$2))]1�q

P(Sn�n(x+$1))
+

[P(&Sn�n(&x+$2))]1�q

P(&Sn�n(&x+$1))
� 0.

This finishes the proof. K

To avoid the assumption Kn( f, x) � f (x) in Theorem 2, we may restrict
g(t)=|t|. In this case for any f # D(I ), the Lebesgue dominated con-
vergence theorem gives that Kn( f, x) � f (x) for each x # I. This gives the
following corollary.

Corollary 1. Let Kn( f, x) be the convolution operators (of Feller type)
so that, for each x in the interior of I, X1, x has finite mgf, E(X1, x)=x and
Var(X1, x)>0. Over the space D(I ), the following statements are equivalent:

(1) f is convex,

(2) Kn( f, x)�Kn+1( f, x) (x # I, n�1),

(3) Kn( f, x)� f (x) (x # I, n�1).

Example 1. If we take P(X1, x=1)=x=1&P(X1, x=0), for x # [0, 1],
in Corollary 1, then Kn( f, x) reduces to the usual Bernstein polynomials
and gives the results in [15, 17, 18].

Example 2. Let P(X1, x= j)=exp(&x) x j�j ! ; j=0, 1, 2, ... and x>0.
Now Kn( f, x) reduces to the Sza� sz operator. Horova [10] provided the
converse result for the Sza� sz operators under the assumption that f is
bounded. Theorem 2 shows that the converse result of convexity holds for
a more general class of functions D(I ). In fact, it is known (cf. [8]) that
the Sza� sz operators can approximate functions lying in the larger space
Dg(I ), where g(t)=t ln(t+1) for t # [0, �). Hence Theorem 2 is applicable
over this space.
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Example 3. Let P(X1, x= j)=(1+x)&1 x j (1+x)& j ; j=0, 1, 2, ... and
x>0. For this case the convolution operator reduces to the Baskakov
operator. Corollary 1 shows that the converse convexity result holds for
any f # D(I ). This extends a result of Horova [9] over a larger class of
functions.

Example 4. For x>0, the Gamma operator is defined as

Gn( f, x)=
x&n

(n&1)! |
�

0
f \y

n+ yn&1e&y�x dy; n=1, 2, ... .

This operator is generated by an iid sequence of exponential random
variables with parameter 1�x. Corollary 1 applies in this case.

Example 5. Let X1, x have probability density function defined over
I=(&�, �) by

fX1, x
( y)=

1

- 2?
exp \&

1
2

( y&x)2+ ,

where x # I. By a change of variable we see that the Weierstrass operator

Wn( f, x)=� n
2? |

�

&�
f \x+

u
n+ exp(&(nu2)�2) du

is also a special case of Kn . Note that Wn approximates functions lying in
Dg(R) where g(t)=t2 and Theorem 2 is applicable. This result was directly
proved in [18].

Example 6. If we take Yi t
iid G taking values in [0, b], b>1 with

E(Y1)=1 and Var(Y1)>0, then for any f # [0, 1], Ziegler [18] considered
the operator

Un( f, x)=Ef \x �n
i=1 Yi

n +=Ef \�n
i=1 Xi, x

n + ,

where Xi, x=xYi , x # [0, 1] and E(X1, x)=x and Var(Xi, x)=x2

Var(Y1)>0 for x>0. Corollary 1 now gives a result of Ziegler. Similarly,
some other results of Ziegler can be directly deduced from Corollary 1 by
this approach.

Theorem 2 does not apply directly to non-Feller operators. In the follow-
ing we present a few applications of Theorems 1 and 1(a).
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4. MONOTONICITY OF BETA OPERATORS

When I=[0, 1], the beta operator is defined by

Bn( f, x)=|
1

0
f (t)

tnx&1(1&t)n(1&x)&1

B(nx, n(1&x))
dt; n=1, 2, ... ; x # (0, 1),

where B(a, b) is the beta function. When x=0 or 1, then Bn( f, x) :=f (x)
for all n.

Theorem 3. Over the space C[0, 1] the following statements are equiv-
alent:

(1) f is convex,

(2) Bn( f, x)�Bn+1( f, x) for each n�1 and each x # [0, 1],

(3) Bn( f, x)� f (x) for each n�1 and each x # [0, 1].

Proof. It was conjectured in [12] that (1) implies (2). This conjecture
was recently proved by Adell et al. [1]. And that (2) implies (3) is trivial.
To prove that (3) implies (1), we need only check the conditions of
Theorem 1. Let x # (0, 1) and let $>0 be any small enough number so that
0<x&$<x+$<1. Trivially,

+n, x([t : $1�|t&x|<$2])>0, for all n=1, 2, ... .

Now note that

Bn( f, x)=Ef (Tn), where Tn=
�n

i=1 Xi

�n
i=1 Xi+�n

i=1 Yi
,

where Xi t
iid G(1, x) and Yi t

iid G(1, 1&x) and the two sequences are
mutually independent. (Here G(*, :) stands for the gamma distribution.)
The beta operator reproduces the linear functions. Now note that for any
0<=<min[x, 1&x],

P(Tn>x+=)=P \ :
n

i=1

Zi>0+ ,

where Zi=Xi (1&x&=)+Yi (&x&=).
Indeed, E(Z1)=&= and its mgf equals

,(%)=\ 1
1&(1&x&=)%+

x

\ 1
1+(x+=)%+

1&x

;
&1

x+=
<%<

1
1&x&=

.
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By the standard results on large deviations (cf. [5]),

P \ :
n

i=1

Zi>0+=P \ :
n

i=1

Zi>n(&=+=)+re&ng(%*).

Direct calculations (simple details omitted) give that

%*=
=

(1&x&=)(x+=)
, g(%*)=log {\ x

x+=+
x

\ 1&x
1&x&=+

1&x

= .

Hence,

P(Tn>x+=)r{\x+=
x +

nx

\1&x&=
1&x +

n(1&x)

= .

A similar argument gives that

P(Tn<x&=)r{\1&x+=
1&x +

n(1&x)

\x&=
x +

nx

= .

These two results imply that for any 0<=1<=2 small enough,

P( |Tn, x&x|>=2)=o(P( |Tn, x&x|>=1)),

and Theorem 1 finishes the proof. K

5. BLEIMANN, BUTZER, AND HAHN OPERATOR

For any f # C[0, �), the BBH functionals are defined by

Ln( f, x)=(1+x)&n :
n

k=0

f \ k
n&k+1+\

n
k+ xk; n=1, 2, ... .

We can write this as

Ln( f, x)=Ef \ Sn

n&Sn+1+ , Sn tB(n, p), p=
x

1+x
,

and Y1 , Y2 , ..., t
iid B(1, p), with Sn tY1+Y2+ } } } +Yn . Since

Ln(t, x)=E \ Sn

n&Sn+1+=x&xpn{x ;

we use Theorem 1(a) now.
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Theorem 4. For the BBH operator, if for any f # D(I ), Ln( f, x)� f (x)
for all n�1 and each x # I then f is convex. Furthermore, for any bounded
continuous function f over I, the following statements are equivalent:

(1) f is convex,

(2) Ln( f, x)�Ln+1( f, x) for all n�1 and x # I,

(3) Ln( f, x)� f (x) for all n�1 and x # I.

Proof. Della Vecchia [4] showed that if a continuous function f is
bounded and convex then (1) implies (2). Hermann [7] showed that
Ln( f, x) � f (x) for any f # D(I ). Thus, we need only show that, for f # D(I ),
if Ln( f, x)� f (x) for all n�1 and each x # I then f is convex. Let
Tn, x=Sn �(n+1&Sn), let $>0 be a fixed number, and note that

P(Tn, x>x+$)=P \ Sn

n+1&Sn
>x+$+=P \Sn

n
& p>=+=n+ ,

where

===($)=
$

(1+x+$)(1+x)
>0 and =n=

x+$
n(1+x+$)

>0.

Since = is an increasing function of $>0, for any fixed $* which is
arbitrarily close to $ and $*>$, we have

P \Sn

n
& p>=($*)+�P(Tn, x>x+$)�P \Sn

n
& p>=($)+

for all large values of n. So it will be sufficient for us to evaluate

P \Sn

n
& p>=+; ==

$
(1+x+$)(1+x)

>0.

Once again, the standard results on large deviations can be applied (direct
calculations omitted) to give

P \Sn

n
& p>=+rexp {&n \ x+$

1+x+$
log \1+

$
x+&log \1+x+$

1+x ++= .

Similarly,

P(Tn, x<x&$)=P(Z� n&(&p)>=&=n),
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where

===($)=
$

(1+x&$)(1+x)
, =n=

x&$
n(1+x&$)

, and Z� n=
&Sn

n
.

We make sure that 0<$<x so that =n>0 for all n. Since =($) is an in-
creasing function of $>0, by picking a $* arbitrarily close to $ and $*<$
we have

P \Z� n&(&p)>=($)+�P(Tn, x<x&$)�P \Z� n&(&p)>=($*+
for all large values of n. Hence, it will be sufficient for us to evaluate

P \Z� n&(&p)>=+; ==
$

(1+x&$)(1+x)
>0.

Again, standard results on large deviations give that

P \Z� n&(&p)>=+rexp {&n \ $&x
1+x&$

log \ x
x&$+&log \1+x&$

1+x ++= .

The above results give that, for any $1<$2 sufficiently small, we can find
a & # (0, 1) such that

(P(Tn, x&x>$2))&

P(Tn, x&x>$1)
� 0, as n � �.

For the BBH operator, bn(x)=Ln(t, x)&x=xpn. So, to end the proof, we
need only verify that for 0<c<$1 ,

pn

P(Tn, x&x>c)
� 0.

This means that we need to prove that

x+c
1+x+c

log \1+
c
x+&log \1+x+c

1+x ++log \ x
1+x+<0.

However, this is easily seen to be true since x+c<1+x+c. This finishes
the proof. K
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6. MEYER-KO� NIG ZELLER OPERATOR

For f # C[0, 1] and v # (0, 1), the Meyer-Ko� nig Zeller (MKZ) func-
tionals are defined by

Mn( f, v) :=(1&v)n+1 :
�

k=0

f \ k
n+k+\

n+k
k + vk

=Ef (Sn+1 �(n+Sn+1)); n=1, 2, ...,

where Sn+1 is a negative binomial random variable with parameters n+1
and 1&v. For v=0 and v=1, Mn( f, v) is taken to equal f (v) for all values
of n.

Theorem 5. For the MKZ operators, the following statements are equiv-
alent:

(1) f is convex,

(2) Mn( f, v)�Mn+1( f, x) for each n�1 and each v # [0, 1],

(3) Mn( f, v)� f (v) for each n�1 and each v # [0, 1].

Proof. Cheney and Sharma [2] showed that (1) implies (2). A simple
probabilistic proof was given by R. A. Khan [14]. It is trivial that (2)
implies (3). Now we show that (3) implies (1). Since this operator
reproduces constant and linear functions, we need only check the two con-
ditions of Theorem 1. For this let v # (0, 1) be a fixed number. Pick any
$>0 small enough so that $<v(1&v). Denote by Tn, v=Sn+1 �(n+Sn+1),
X� n=Sn �n and +=E(X� n)=v�(1&v). Note that

P(Tn, v>v+$)=P(X� n+1&+>=&=n),

where

===($)=
$

(1&v)(1&v&$)
, =n=

(v+$)
(n+1)(1&v&$)

.

We can select a $* arbitrarily close to $ with $<$*<v(1&v) so that

P(X� n+1&+>=($))�P(Tn, v>v+$)�P(X� n+1&+>=($*))

for all large values of n. Hence it will be enough for us to find an
approximation of the left term. By the usual results on large deviations we
have

P \X� n+1&+>
$

(1&v)(1&v&$)+re&(n+1) g(%*),
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where

g(%*)=
v+$

1&v&$
ln \v+$

v +&log \ 1&v
1&v&$+ .

Similarly, if Z� n=&X� n , we have

P(Tn, v<v&$)=P(Z� n+1&(&+)>=+=n)

where

===($)=
$

(1&v)(1&v+$)
; =n=

(&$)
(n+1)(1&v+$)

.

Again, it will be sufficient to find a sharp approximation of

P \Z� n+1&(&+)>
$

(1&v)(1&v+$)+ .

And for this we use the usual results on large deviations to get

P \Z� n+1&(&+)>
$

(1&v)(1&v+$)+re&(n+1) h(%*),

where

h(%*)=
$&v

1&v+$
ln \ v

v&$+&log \ 1&v
1&v+$+ .

These results imply that for any 0<$1<$2 sufficiently small,

P( |Tn, v&v|�$2)
P( |Tn, v&v|�$1)

� 0.

Now Theorem 1 gives the result. K

7. PICARD OPERATOR

For any f # D(I ) where I=R, the Picard operator is defined by

Pn( f, x)=
n
2 |

�

&�
f (t) e&n |t&x| dt=Ef (Tn, x), n=1, 2, ...,
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where Tn, x has the above double exponential density. We give one last
application of Theorem 1.

Theorem 6. For the Picard operator, over the space D(R) the following
are equivalent:

(1) f is convex,

(2) Pn( f, x)� f (x) for each x # R and n�1.

Proof. The Lebesgue dominated convergence theorem implies that
Pn( f, x) � f (x) for each x # R and each f # D(I ). This operator reproduces
the linear functions. Since

P( |Tn, x&x|>$)=2e&n$, n=1, 2, ...,

for any 0<$1<$2 , we may take &=($1+$2)�(2$2)<1 to have

(P( |Tn, x&x|>$2))&

P( |Tn, x&x|>$1)
=

2e&n($1+$2)�2

2e&n$1
=e&n($2&$1)�2 � 0.

Theorem 1 finishes the proof. K

Remark. In the end we should remark that the above results cannot be
extended to multivariate approximation operators of the type discussed
(without either strengthening the assumptions or weakening some conclu-
sions) as one can easily construct positive linear operators Ln( f, x, y)
which converge to f (x, y) from above for each (x, y) in a closed convex set
and yet f is not convex.
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